This commit is contained in:
wangfiox 2024-04-19 22:54:36 +08:00
parent 5f761cdcf6
commit 5b3fcd0900
1 changed files with 26 additions and 5 deletions

View File

@ -7,7 +7,7 @@
主要就是约束方程了:
$$
min\{ \sum_{i \le i \lt j \le n} X_i^T C_{ij} X_j + \sum_{i=1}^n X_i^T \vec{cost(t_i)} \}
min\{ \sum_{i \le i \lt j \le n} X_i^T C_{ij} X_j + \sum_{i=1}^n X_i^T \vec{E(t_i)} \}
$$
- $X_i = (x_{i, sp}, x_{i, r_1}, x_{i, r_2}, ..., x_{i, r_K})^T$
@ -18,7 +18,7 @@ $$
- i === j? (不一定比方说在传参的时候i 可以放到 a0 但是 j 是不能放到 a0 的)
- 但是我有一种想法: 就是我认为还是要把 32 个寄存器全部摆上台面的,如果不能用,我认为可以相应的可以设置为 $\infin$ ,这显然可能会变成一个 稀疏矩阵,然后是不是可以进行 凸优化啥的。如果 i!=j 并且有: $R_i$ ^ $R_j \ne \phi$ 那这可能需要对齐,可能有点麻烦
- 如果 i === j那么可以做一件事情将 $c_{ij}$ 的对角线设置为 负数。对角线意味着: virtual reg $t_i$ 和 $t_j$ 是可接合的,可以分配到 同一个 physical reg 的,负数的 语义 是:鼓励接合(代价总是越小越好)
- $\vec{cost(t_i)}$ : $t_i$(virtual reg) 溢出的代价。如果每个 $t_i$ 都选择了 spill ,那么相当于是: $\forall t_i, X_i = (1, 0, ..., 0)$,那么 $\sum_{i=1}^n s_i X_i = \sum_{i=1}^n cost(t_i)$
- $\vec{E(t_i)}$ : $t_i$(virtual reg) 溢出的代价。如果每个 $t_i$ 都选择了 spill ,那么相当于是: $\forall t_i, X_i = (1, 0, ..., 0)$,那么 $\sum_{i=1}^n s_i X_i = \sum_{i=1}^n E(t_i)$
## 启发式 规约求解
@ -28,20 +28,42 @@ $$
那么上面的约束方程可以写成:
$$
min\{ X^T C Y + X^T \vec{cost(x)} + Y^T \vec{cost(y)} \}
min\{ X^T C Y + X^T \vec{E(x)} + Y^T \vec{E(y)} \}
$$
最终经过一通数学计算可以得到:
(如何求解? 一个关键步骤是: 令 某一串式子 = 0
$$
Y^T ( \vec{cost(y)} + ( ... min\{ X + C_{,k} \}_{ 1 \le k \le i } ... )_{i} )
Y^T ( \vec{E(y)} + ( ... min\{ X + C_{,k} \}_{ 1 \le k \le i } ... )_{i} )
$$
### reduce 2
```
C_yz[i][j] = min{ C_xy(第i列) + C_xz(第j列) + E_x }
```
这里将一个向量 通过 min(reduce) 规约成一个标量
### reduce N
```
for (i = 1; i < len(E_y); i++) {
delta(i) = 0;
for (j = 1; j < len(E_z); j++) {
delta(i) = min(C_xy(i, :) + E_y);
}
}
min_index = get_min_index(delta);
for y : vertex in adj(x) {
E_y += C_xy(min_index, :);
}
```
state i -> 指的是选中 C_xy 的第 i 列( y 是 x 的所有 adj -> delta(i) += C_xy(i, :)。
找到 delta(i) 最低的那一列,然后再更新每一个代价向量
## 伪代码
伪代码 ( from 华保健 ) 如下:
@ -68,7 +90,6 @@ void reduce_2(vertex x) {
}
void reduce_N(vertex x) {
y, z = adj(x);
for (i = 1; i < len(E_y); i++) {
delta(i) = 0;
for (j = 1; j < len(E_z); j++) {